TARGET MATHEMATICS by:- AGYAT GUPTA

Page 1 of 3

Code No. Series AG-F7

- Please check that this question paper contains 3 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 29 questions.

General Instructions: -

- **1.** All questions are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A, B and C. Section A contains 10 questions of 1 marks each, Section B is of 12 questions of 4 marks each and Section C is of 7 questions of 6 marks each.
- 3. Write the serial number of the question before attempting it.
- 4. If you wish to answer any question already answered, cancel the previous answer.
- 5. In questions where internal choices is provided. You must attempt only one choice.

Pre-Board Examination 2009 -10

Time: 3 hrs. M.M.: 100		
	CLASS – XII MATHEMATICS	
Section A		
Q.1	Find the angle between the lines $\frac{x+1}{5} = \frac{y-2}{-2} = \frac{z-1}{2} \& \frac{x+3}{-2} = \frac{z-4}{3}, y = -5$.	
Q.2	A line makes an angle of $\frac{\pi}{4}$ with each x-axis and y-axis. Find the angle between this line and the z-	
0.2	axis. $(1 0 2)$ (-)	
Q.3	Find the value of x such that: $\begin{pmatrix} x & -5 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ 4 \\ 1 \end{pmatrix} = 0.$	
Q.4	Find the derivative of tan x w.r.t. sin x.	
Q.5	If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that vector $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , find the value of λ .	
Q.6	Show that the relation R on $N \times N$ defined by $(a,b)R(c,d)$ if and only if $ad = bc \forall a,b,c,d \in N$ is transitive.	
Q.7	If P(A)=0.5, P(B)=0.6 and $P(A \cup B) = 0.8$, find P(A/B).	
Q.8	For the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, find M ₁₂ and C ₂₃ where M ₁₂ is minor of the element in first row	
	and second column and C_{23} is cofactor of the element in second row and third column.	
Q.9	If a binary operation \oplus is defined by $a \oplus b = 2a - 3b$, find $8 \oplus 3$.	
Q.10	Evaluate : $\int \frac{3x^2 + 4x - 5}{\left(x^3 + 2x^2 - 5x + 1\right)^2} dx$	
TMC/D/7	9/89 1 P.T.O.	
	Resi.: D-79 Vasant Vihar : Office : 89-Laxmi bai colony	

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII .© publication of any part of this paper is strictly prohibited..

Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 2 of 3
	Section B
Q.11	Let \oplus be a binary operation on the set of natural numbers N given by $a \oplus b = \text{L.C.M.}$ of a and b Find (i) $5 \oplus 7$, $20 \oplus 16$ (ii) Is \oplus commutative? (iii) Is \oplus associative? (iv) Find identity element of \oplus in N
Q.12	A particle moves along the curve $6y = x^3 + 2$. Find the points on the curve at which the y- coordinate is changing 8 times as fast as the x-coordinate. Or
	Find the intervals in which the function $f(x) = \sin\left(2x + \frac{\pi}{4}\right), 0 \le x \le 2\pi$ is (i) increasing (ii)
0.10	decreasing .
Q.13	Using the properties of determinants, show that $\begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix} = (a^3 - 1)^2$.
Q.14	Evaluate : $\int_{0}^{\pi/4} \frac{\tan^{-3} x}{1 + \cos 2x} dx$.
Q.15	Find the values of <i>a</i> and <i>b</i> so that the function $f(x) = \begin{cases} ax^2 + b, & x < 2\\ 2 & x = 2\\ 2ax - b, & x > 2 \end{cases}$ may be continuous.
Q.16	Solve the following differential equation : $x \frac{dy}{dx} - y(\log y - \log x + 1) = 0$. Or Solve the differential equation $x \frac{dy}{dx} + y = x \cos x + \sin x$ given that $y\left(\frac{\pi}{2}\right) = 1$.
0.15	
Q.17	Evaluate : $\int \frac{1}{\cos x + \cos ecx} dx$.
Q.18	Colored balls are distributed in four boxes as shown in the following table:
	Color
	Box Black White Red Blue
	I 3 4 5 6
	II 2 2 2 2 II 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	III 1 2 3 1 IV 4 2 1 5
	A box is selected at random and then a ball is randomly drawn from the selected box. The color of the ball is black. Find the probability that ball drawn is from box III. Or
	3 bad eggs are mixed with 7 good ones. 3 eggs are taken at random from the lot. Find the probability distribution of number of bad eggs drawn. Find also the mean and variance of the probability distribution.
Q.19	Find a vector of magnitude 11 units which is perpendicular to both the vectors $4\hat{i} - \hat{j} + 8\hat{k}and - \hat{j} + \hat{k}$.
	Or If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.
Q.20	Solve the equation $_{\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\left(\frac{6}{17}\right)$.
TMC/D/79 Ph. :23	2 P.T.O. Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony 337615; 4010685@, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited

This document was created using

STITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com. **SOLID CONVERTER** PDF To remove this product at www

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 3 of 3
Q.21	If $y = x^x$, show that $\frac{d^2 y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0$.
Q.22	A variable plane which remains at a constant distance of 9 units from the origin, cuts the coordinate axes at the points A, B and C. Show that the locus of the centroid of $\triangle ABC$ is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{9}$.
	Section C
Q.23	If $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$, find AB. Use the result to solve the following system of linear equations: $2x-y+z=-1$; $-x+2y-z=4$; $x-y+2z=-3$.
Q.24	A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods X and Y are available at a cost of Rs 4 and Rs 3 per unit respectively. One unit of food X contains 200 units of vitamins, 1 unit of minerals and 40 calories while one unit of food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of foods X and Y should be used to have least cost, satisfying the requirement.
Q.25	Draw a rough sketch of $y^2 = x + 1$ and $y^2 = -x + 1$ and determine the area enclosed by the two curves.
Q.26	Show that the four point (0, -1, -1), (4, 5, 1), (3, 9, 4) and (-4, 4, 4) are coplanar. Also, find the equation of the plane containing them.
Q.27	In a test an examinee either guesses or copies or knows the answer to a multiple choice question with four choices. The probability that he makes a guess is $\frac{1}{3}$ and the probability that he copies the answer is $\frac{1}{6}$. The probability that his answer is correct given that he copied it is $\frac{1}{8}$. Find the probability that he knew the answer to the question given that he correctly answered it.
	In a school 8% of the boys and 2% of girls have an I.Q. of more than 120. In the school 60% of the students are boys. A student with I.Q. more than 120 is selected. Find the probability that the student selected is a boy.
Q.28	Determine whether or not the following pairs of lines intersect. If these intersect, find the point of intersection, otherwise obtain the shortest distance between them: $\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda \left(3\hat{i} - \hat{j}\right)$. $\vec{r} = 4\hat{i} - \hat{k} + \mu \left(2\hat{i} + 3\hat{k}\right)$
Q.29	Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle. Or
	Water is running into a conical vessel 12 cm deep and 4 cm in radius at the rate of 0.2 cu cm/s. When the water is 6 cm deep, find at what rate is (i) The water is rising? (ii) The water surface area increasing?
	X

TMC/D/79/89

3

P.T.O.

F

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

This document was created using

e

To remove this message, purchase the product at www.SolidDocuments.com